Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer
Q11. If I6 × 8n+2 = 2m, then m is equal to :
(a) n + 8
(b) 2n + 8
(c) 3n + 2
(d) 3n + 10
(e) None of these
Answer: (d) Solution: 16×8n+2=2m ⇒24×23n+6=2m ⇒24+3n+6=2m ⇒3n+10=m |
Q12. The value of3√512=2x, then x is equal to:
(a) 5
(b) 4
(c)
(d) 3
(e) None of these
Answer: (d) Solution: 3√512=2x ⇒3√29=2x ⇒293=2x ⇒x=3 |
Q13. The value of x satisfying √4+√x=4is:
(a) 125
(b) 144
(c) 120
(d)
(e) None of these
Answer: (b) Solution: √4+√x=4 ⇒4+√x=16 ⇒√x=12 ⇒x=144 |
Q14. If5x+3=(25)3x−4, then the value of x is:
(a) 511
(b) 115
(c) 113
(d) 135
(e) None of these
Answer: (b) Solution: 5x+3=(25)3x−4 ⇒5x+3=56x−8 ⇒6x−8=x+3 ⇒5x=11 ⇒x=115 |
Q15. If 34x-2 = 729, then the value of x is:
(a) 1
(b) 1.5
(c) 2
(d) 3
(e) None of these
Answer: (c) Solution: 34x−2=729 ⇒34x−2=36 ⇒4x−2=6 ⇒x=2 |
Q16. If 22x−1=18x−3 then n the value of x is:
(a) 3
(b) 2
(c) 0
(d) -2
(e) None of these
Answer: (b) Solution: 22x−1=18x−3 ⇒22x−1=2−3(x−3) ⇒2x−1=−3x+9 ⇒5x=10 ⇒x=2 |
Q17. If, (ab)x−1=(ba)x−3 then n the value of x is:
(a) 1
(b) 4
(c) 2
(d) 3
(e) None of these
Answer: (c) Solution: (ab)x−1=(ba)x−3 ⇒(ab)x−1=bx−3ax−3 ⇒(ab)x−1=a−(x−3)b−(x−3)=(ab)−(x−3) ⇒x−1=−x+3 ⇒x=2 |
Q18. If2x×815=215, then x is equal to:
(a) 15
(b) −15
(c) 25
(d) −25
(e) None of these
Answer: (d) Solution: 2x×815=215 2x×235=215 ⇒2x+35=215 ⇒x+35=15 ⇒x=−25 |
Q19. If 2x – 2x-1 = 4 , then The value of x3 is:
(a) 27
(b) 4
(c) 1
(d) 256
(e) None of these
Answer: (a) Solution: 2x−2x−1=4 ⇒2x−2x2=4 ⇒2.2x−2x2=4 ⇒2x(2−1)=8 ⇒2x=23 ⇒x=3 ⇒x3=27 |
Q20. The value of x for which 2x+4 – 2x-1 = 31, is:
(a) 0
(b) -2
(c) 2
(d) 1
(e) None of these
Answer: (d) Solution: 2x+4−2x−1=31 ⇒16×2x−2x2=31 ⇒2x(16−12)=31 ⇒2x×312=31 ⇒2x=21 x=1 |