Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer
Q11. If I6 × 8n+2 = 2m, then m is equal to :
(a) n + 8
(b) 2n + 8
(c) 3n + 2
(d) 3n + 10
(e) None of these
Answer: (d) Solution: $16\times 8^{n+2}=2^m$ $\Rightarrow 2^4\times 2^{3n+6}=2^m$ $\Rightarrow 2^{4+3n+6}=2^m$ $\Rightarrow 3n+10 =m$ |
Q12. The value of$\sqrt[3]{512}=2^x$, then x is equal to:
(a) 5
(b) 4
(c)
(d) 3
(e) None of these
Answer: (d) Solution: $\sqrt[3]{512}=2^x$ $\Rightarrow \sqrt[3]{2^9}=2^x$ $\Rightarrow 2^{\frac{9}{3}}=2^x$ $\Rightarrow x=3$ |
Q13. The value of x satisfying $\sqrt{4+\sqrt{x}}=4$is:
(a) 125
(b) 144
(c) 120
(d)
(e) None of these
Answer: (b) Solution: $\sqrt{4+\sqrt{x}}=4$ $\Rightarrow 4+\sqrt{x}=16$ $\Rightarrow \sqrt{x}=12$ $\Rightarrow x=144$ |
Q14. If$5^{x+3}\,\,=\,\,\left( 25 \right) ^{3x-4}$, then the value of x is:
(a) $\frac{5}{11}$
(b) $\frac{11}{5}$
(c) $\frac{11}{3}$
(d) $\frac{13}{5}$
(e) None of these
Answer: (b) Solution: $5^{x+3}\,\,=\,\,\left( 25 \right) ^{3x-4}$ $\Rightarrow 5^{x+3}\,\,=\,\,5^{\begin{array}{c} 6x-8\\ \end{array}}$ $\Rightarrow 6x-8 =\,\,x+3$ $\Rightarrow 5x\,\,=\,\,11$ $\Rightarrow x=\frac{11}{5}$ |
Q15. If 34x-2 = 729, then the value of x is:
(a) 1
(b) 1.5
(c) 2
(d) 3
(e) None of these
Answer: (c) Solution: $3^{4x-2}\,\,=\,\,729$ $\Rightarrow 3^{4x-2}=3^6$ $\Rightarrow 4x-2=6$ $\Rightarrow x=2$ |
Q16. If $2^{2x-1}\,\,=\,\,\frac{1}{8^{x-3}}$ then n the value of x is:
(a) 3
(b) 2
(c) 0
(d) -2
(e) None of these
Answer: (b) Solution: $2^{2x-1}\,\,=\,\,\frac{1}{8^{x-3}}$ $\Rightarrow 2^{2x-1}\,\,=\,\,2^{-3\left( x-3 \right)}$ $\Rightarrow 2x-1=-3x+9$ $\Rightarrow 5x=10$ $\Rightarrow x=2$ |
Q17. If, $\left( \frac{a}{b} \right) ^{x-1}\,\,=\,\,\left( \frac{b}{a} \right) ^{x-3}$ then n the value of x is:
(a) 1
(b) 4
(c) 2
(d) 3
(e) None of these
Answer: (c) Solution: $\left( \frac{a}{b} \right) ^{x-1}\,\,=\,\,\left( \frac{b}{a} \right) ^{x-3}$ $\Rightarrow \left( \frac{a}{b} \right) ^{x-1}=\,\,\frac{b^{x-3}}{a^{x-3}}$ $\Rightarrow \left( \frac{a}{b} \right) ^{x-1}=\frac{a^{-\left( x-3 \right)}}{b^{-\left( x-3 \right)}}=\left( \frac{a}{b} \right) ^{-\left( x-3 \right)}$ $\Rightarrow x-1=-x+3$ $\Rightarrow x=2$ |
Q18. If$2^x\times 8^{\frac{1}{5}}=2^{\frac{1}{5}}\,\,$, then x is equal to:
(a) $\frac{1}{5}$
(b) $-\frac{1}{5}$
(c) $\frac{2}{5}$
(d) $-\frac{2}{5}$
(e) None of these
Answer: (d) Solution: $2^x\times 8^{\frac{1}{5}}=2^{\frac{1}{5}}\,\,$ $2^x\times 2^{\frac{3}{5}}\,\,=2^{\frac{1}{5}}\,\,$ $\Rightarrow 2^{x+\frac{3}{5}}\,\,=2^{\frac{1}{5}}\,\,$ $\Rightarrow x+\frac{3}{5}=\frac{1}{5}$ $\Rightarrow x=\,\,-\frac{2}{5}$ |
Q19. If 2x – 2x-1 = 4 , then The value of x3 is:
(a) 27
(b) 4
(c) 1
(d) 256
(e) None of these
Answer: (a) Solution: $2^x-2^{x-1}=4$ $\Rightarrow 2^x-\frac{2^x}{2}=4$ $\Rightarrow \frac{2.2^x-2^x}{2}=4$ $\Rightarrow 2^x\left( 2-1 \right) =8$ $\Rightarrow 2^x=2^3$ $\Rightarrow x=3$ $\Rightarrow x^3=27$ |
Q20. The value of x for which 2x+4 – 2x-1 = 31, is:
(a) 0
(b) -2
(c) 2
(d) 1
(e) None of these
Answer: (d) Solution: $2^{x+4}-2^{x-1}=31$ $\Rightarrow 16\times 2^x-\frac{2^x}{2}=31$ $\Rightarrow 2^x\left( 16-\frac{1}{2} \right) =31$ $\Rightarrow 2^x\times \frac{31}{2}=31$ $\Rightarrow 2^x=2^1$ $x=1$ |