Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer
Q1. Evaluate $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$
(a) 5
(b) 4
(c) 3
(d) 2
Answer: (c) Solution: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}=\frac{2\sqrt{6}+\sqrt{6}}{2\sqrt{6}-\sqrt{6}}=\frac{3\sqrt{6}}{\sqrt{6}}=3$ |
Q2. The smallest of is: $\sqrt{8}+\sqrt{5},\sqrt{7}+\sqrt{6},\sqrt{10}+\sqrt{3}\mathrm{and} \sqrt{11}+\sqrt{2}$
(a) $\sqrt{8}+\sqrt{5}$
(b) $\sqrt{7}+\sqrt{6}$
(c) $\sqrt{10}+\sqrt{3}$
(d) $\sqrt{11}+\sqrt{2}$
Answer: (d) Solution: $\sqrt{\left( \sqrt{8}+\sqrt{5} \right) ^2}=\sqrt{13+2\sqrt{40}}$ $\sqrt{\left( \sqrt{7}+\sqrt{6} \right) ^2}=\sqrt{13+2\sqrt{42}}$ $\sqrt{\left( \sqrt{10}+\sqrt{3} \right) ^2}=\sqrt{13+2\sqrt{30}}$ $\sqrt{\left( \sqrt{11}+\sqrt{2} \right) ^2}=\sqrt{13+2\sqrt{22}}$ Since $2\sqrt{22}$ is smallest then $\sqrt{11}+\sqrt{2}$ is smallest |
Q3. Find the value of $\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}$
(a) 2
(b) $2^{\frac{1}{2}}$
(c) $2^{\frac{11}{12}}$
(d) $2^{\frac{31}{32}}$
Answer: (d) Solution: $\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}=2^{\frac{2^5-1}{2^5}}=2^{\frac{31}{32}}$ Rules: $\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}}}}}}=\mathrm{X}^{\frac{\mathrm{X}^{\mathrm{n}}-1}{\mathrm{X}^{\mathrm{n}}}}$ where n is no. of times X repeated. |
Q4. Find the value of $\sqrt{5\sqrt{5\sqrt{5…\mathrm{\alpha}}}}$
(a) 5
(b) $5^{\frac{7}{8}}$
(c) $5^{\frac{1}{8}}$
(d) $5^{\frac{1}{3}}$
Answer: (a) Solution: $\sqrt{5\sqrt{5\sqrt{5…\mathrm{\alpha}}}}=5$ Rules: $\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}\sqrt{\mathrm{X}}}}}}=\mathrm{X}$ |
Q5. Find the value of $\sqrt{12+\sqrt{12+\sqrt{12….}}}$
(a) 3
(b) –3
(c) 2
(d) –2
Answer: (b) Solution: $\sqrt{12+\sqrt{12+\sqrt{12….}}}=\mathrm{x}\left( \mathrm{let} \right)$ ∴ x = 4 or -3 Here –3 is in option. Rules: $\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) +\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) +\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) ….}}}=-\mathrm{n},\left( \mathrm{n}+1 \right) $ |
Q6. Find the value of $\sqrt{30-\sqrt{30-\sqrt{30….}}}$
(a) 5
(b) 6
(c) –5
(d) 4
Answer: (a) Solution: $\sqrt{30-\sqrt{30-\sqrt{30….}}}=\mathrm{x}\left( \mathrm{let} \right)$ ∴ x = -6 or 5 Here 5 is in option. Rules: $\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) -\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) -\sqrt{\mathrm{n}\left( \mathrm{n}+1 \right) ….}}}=\mathrm{n},-\left( \mathrm{n}+1 \right) $ |
Q7. Find the square root of $105\frac{4}{64}$
(a) $15\frac{1}{4}$
(b) $15\frac{3}{4}$
(c) $10\frac{1}{4}$
(d) $6\frac{1}{4}$
Answer: (c) Solution: $\sqrt{105\frac{4}{64}\,\,}=\,\,\sqrt{\frac{6724}{64}}=\frac{82}{8}=10\frac{1}{4}$ |
Q8. Find the value of
$\frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}}$
(a) 0
(b) 1
(c) 1/3
(d) 5
(e) 1/5
Answer: (d) Solution: $\frac{1}{\sqrt{9}-\sqrt{8}}=\frac{\sqrt{9}+\sqrt{8}}{\left( \sqrt{9}-\sqrt{8} \right) \left( \sqrt{9}+\sqrt{8} \right)}=\sqrt{9}+\sqrt{8}$ Similarly $\frac{1}{\sqrt{8}-\sqrt{7}}=\sqrt{8}+\sqrt{7}$ $\frac{1}{\sqrt{7}-\sqrt{6}}=\sqrt{7}+\sqrt{6}$ $\frac{1}{\sqrt{6}-\sqrt{5}}=\sqrt{6}+\sqrt{5}$ $\frac{1}{\sqrt{5}-\sqrt{4}}=\sqrt{5}+\sqrt{4}$ $\therefore \sqrt{9}+\sqrt{8}-\sqrt{8}-\sqrt{7}+\sqrt{7}-\sqrt{6}-\sqrt{5}+\sqrt{5}+\sqrt{4}$ = 3 + 2 = 5 |
Q9. The value of $\left( \frac{1024}{243} \right) ^{-\frac{4}{5}}$ is:
(a) $\frac{81}{16}$
(b) $\frac{81}{256}$
(c) $\frac{4}{9}$
(d) $\frac{9}{4}$
(e) None of these
Answer: (b) Solution: $\left( \frac{1024}{243} \right) ^{-\frac{4}{5}}\,\,=\,\,\left( \frac{\left( 2 \right) ^{10}}{\left( 3 \right) ^5} \right) ^{^{-\frac{4}{5}}}=\,\,\frac{2^{10\times \left( -\frac{4}{5} \right)}}{3^{5\times \left( -\frac{4}{5} \right)}}\,\,=\,\,\frac{2^{-8}}{3^{-4}}=\left( \frac{3}{4} \right) ^4=\frac{81}{256}$ |
Q10. The value of $\left( \sqrt{125} \right) ^{\frac{1}{3}}$is:
(a) 2
(b) 4
(c) 5
(d) 8
(e) None of these
Answer: (e) Solution: $\left( \sqrt{125} \right) ^{\frac{1}{3}}\,\,=\,\,\left( \sqrt{5^3} \right) ^{\frac{1}{3}}\,\,=\,\,\left( 5^{\frac{3}{2}} \right) ^{\frac{1}{3}}=\sqrt{5}$ |