Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer
Q1. Evaluate √24+√6√24−√6
(a) 5
(b) 4
(c) 3
(d) 2
Answer: (c) Solution: √24+√6√24−√6=2√6+√62√6−√6=3√6√6=3 |
Q2. The smallest of is: √8+√5,√7+√6,√10+√3and√11+√2
(a) √8+√5
(b) √7+√6
(c) √10+√3
(d) √11+√2
Answer: (d) Solution: √(√8+√5)2=√13+2√40 √(√7+√6)2=√13+2√42 √(√10+√3)2=√13+2√30 √(√11+√2)2=√13+2√22 Since 2√22 is smallest then √11+√2 is smallest |
Q3. Find the value of √2√2√2√2√2
(a) 2
(b) 212
(c) 21112
(d) 23132
Answer: (d) Solution: √2√2√2√2√2=225−125=23132 Rules: √X√X√X√X√X=XXn−1Xn where n is no. of times X repeated. |
Q4. Find the value of √5√5√5…α
(a) 5
(b) 578
(c) 518
(d) 513
Answer: (a) Solution: √5√5√5…α=5 Rules: √X√X√X√X√X=X |
Q5. Find the value of √12+√12+√12….
(a) 3
(b) –3
(c) 2
(d) –2
Answer: (b) Solution: √12+√12+√12….=x(let) ∴ x = 4 or -3 Here –3 is in option. Rules: √n(n+1)+√n(n+1)+√n(n+1)….=−n,(n+1) |
Q6. Find the value of √30−√30−√30….
(a) 5
(b) 6
(c) –5
(d) 4
Answer: (a) Solution: √30−√30−√30….=x(let) ∴ x = -6 or 5 Here 5 is in option. Rules: √n(n+1)−√n(n+1)−√n(n+1)….=n,−(n+1) |
Q7. Find the square root of 105464
(a) 1514
(b) 1534
(c) 1014
(d) 614
Answer: (c) Solution: √105464=√672464=828=1014 |
Q8. Find the value of
1√9−√8−1√8−√7+1√7−√6−1√6−√5+1√5−√4
(a) 0
(b) 1
(c) 1/3
(d) 5
(e) 1/5
Answer: (d) Solution: 1√9−√8=√9+√8(√9−√8)(√9+√8)=√9+√8 Similarly 1√8−√7=√8+√7 1√7−√6=√7+√6 1√6−√5=√6+√5 1√5−√4=√5+√4 ∴√9+√8−√8−√7+√7−√6−√5+√5+√4 = 3 + 2 = 5 |
Q9. The value of (1024243)−45 is:
(a) 8116
(b) 81256
(c) 49
(d) 94
(e) None of these
Answer: (b) Solution: (1024243)−45=((2)10(3)5)−45=210×(−45)35×(−45)=2−83−4=(34)4=81256 |
Q10. The value of (√125)13is:
(a) 2
(b) 4
(c) 5
(d) 8
(e) None of these
Answer: (e) Solution: (√125)13=(√53)13=(532)13=√5 |