Algebra Expressions MCQ Questions

Facebook
Twitter
Telegram
WhatsApp
Pinterest
Reddit
Tumblr

Algebra Expressions MCQ Questions with details Solution

 

Q11. If p = 999, then the value of 3p(p2+3p+3)+1is

(a) 998

(b) 999

(c) 1000

(d) 1002

Answer: (c) 1000

Solution: 3p(p2+3p+3)+1

=3p3+3p2.1+3p.12+1

=3(p+1)3

= p + 1 = 999 + 1 = 1000

Q12. If x + 1y= 1 and y + 1z = 1, what is the value of xyz?

(a) 1

(b) – 1

(c) 0

(d) ½

Answer: (b) – 1

Solution: y + 1z = 1 ⇒ y = 1 – 1z= z1z

Now x + 1y= 1

⇒ xy + 1 = y

⇒ xy + 1 = z1z

⇒ xyz + z = z –1

⇒ xyz = –1

Q13. If x2 + y2 + 2x + 1 = 0, then the value of x31 + y35 is

(a) – 1

(b) 0

(c) 1

(d) 2

Answer: (a) – 1

Solution: x2 + y2 + 2x + 1 = 0

⇒ x2 + 2x + 1 + y2 = 0

⇒ (x + 1)2 + y2 = 0

⇒ x + 1 = 0 and y = 0

⇒ x – 1 and y = 0

∴ x31 + y35 = – 1 + 0 = –1

Q14. If x2 + y2 + 2x + 1 = 0, then the value of x2020 + y2020 is

(a) – 1

(b) 0

(c) 1

(d) 2

Answer: (c) 1

Solution: x2 + y2 + 2x + 1 = 0

⇒ x2 + 2x + 1 + y2 = 0

⇒ (x + 1)2 + y2 = 0

⇒ x + 1 = 0 and y = 0

⇒ x – 1 and y = 0

∴ x2020 + y2020 =  1 + 0 = 1

Q15.  a1a+b1b+c1c=1 then find the value of

11a+11b+11c=1

(a) 1

(b) 2

(c) 3

(d) 4

Answer: (a) 1

Solution: a1a+b1b+c1c=1

a1a+1+b1b+1+c1c+1=4

a+1a1a+b+1b1b+c+1c1c=4

11a+11b+11c=1

Q16. If a2 = b + c, b2 = c + a, c2 = a + b, then the value of

11+a+11+b+11+c

(a) abc

(b) a2b2c2

(c) 1

(d) 0

Answer: (c) 1

Solution: 11+a=aa+a2=aa+b+c

Similarly, 11+b=ba+b+c

Similarly, 11+c=ca+b+c

11+a+11+b+11+c=a+b+ca+b+c=1

Q17. If a + b + c = 0, then find the value of

a2a2bc+b2b2+ca+c2c2ab

(a) 0

(b) 1

(c) 6

(d) None of these

Answer: (d) None of these

Solution: Given, a + b + c = 0 ⇒ a = –(b+c) ⇒ a2 = (b+c)2

Now, a2a2bc+b2b2+ca+c2c2ab

=(b+c)2(b+c)2bc+b2b2+c(b+c)+c2c2+b(b+c)

=b2+2bc+c2b2+bc+c2+b2b2+c2+bc+c2b2+c2+bc

=2(b2+bc+c2)b2+bc+c2=2

Q18. If a + b + c = 3, a2 + b2 + c2 = 6 and1a+1b+1c=1, where a, b, c are all non-zero, then ‘abc’ is equal to

(a) 12

(b) 14

(c) 23

(d) 32

Answer: (d)32

Solution: a + b + c = 3

⇒ a2 + b2 + c2 +2ab +2bc +2ca = 9 (squaring both side)

⇒ ab + bc + ca = 32

Now, 1a+1b+1c=1

ab+bc+caabc=1

⇒ abc = ab + bc + ca = 32

Q19. If x2 + y2 + z2 + 2 = 2(y – x), then value of x3 + y3 + z3 is equal to

(a) 0

(b) 1

(c) 2

(d) 3

Answer: (a) 0

Solution: x2 + y2 + z2 + 2 = 2(y – x)

⇒ x2 + 2x + y2 – 2y + z2 + 2 = 0

⇒ (x2 + 2x + 1) + (y2 – 2y + 1) + z2 = 0

⇒ (x + 1)2 + (y – 1)2 + z2 = 0

⇒ x + 1 = 0 ⇒ x = – 1; y – 1 = 0 ⇒ y = 1; z = 0

∴ x3 + y3 + z3 = – 1 + 1 + 0 = 0

Q20. Q. If   x4+1x4=119 and x > 1 then the value of x31x3

(a) 54

(b) 18

(c) 72

(d) 36

Answer: (d) 36

Solution: x4+1x4=119

x4+1x4+2.x2.1x2=121

(x2+1x2)2=112

(x2+1x2)=11 ( x > 1)

x2+1x22.x.1x=9

(x1x)2=32

x1x=3 ( X > 1)

Using Trick ⇒x31x3=33+3×3=36

Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x1x=n then x31x3 = n3 + 3.n

 

Pages ( 2 of 2 ): « Previous1 2

Read Important Article

Leave a Comment

error: Content is protected !!