Algebra Expressions MCQ Questions with details Solution
Q11. If p = 999, then the value of 3√p(p2+3p+3)+1is
(a) 998
(b) 999
(c) 1000
(d) 1002
Answer: (c) 1000 Solution: 3√p(p2+3p+3)+1 =3√p3+3p2.1+3p.12+1 =3√(p+1)3 = p + 1 = 999 + 1 = 1000 |
Q12. If x + 1y= 1 and y + 1z = 1, what is the value of xyz?
(a) 1
(b) – 1
(c) 0
(d) ½
Answer: (b) – 1 Solution: y + 1z = 1 ⇒ y = 1 – 1z= z−1z Now x + 1y= 1 ⇒ xy + 1 = y ⇒ xy + 1 = z−1z ⇒ xyz + z = z –1 ⇒ xyz = –1 |
Q13. If x2 + y2 + 2x + 1 = 0, then the value of x31 + y35 is
(a) – 1
(b) 0
(c) 1
(d) 2
Answer: (a) – 1 Solution: x2 + y2 + 2x + 1 = 0 ⇒ x2 + 2x + 1 + y2 = 0 ⇒ (x + 1)2 + y2 = 0 ⇒ x + 1 = 0 and y = 0 ⇒ x – 1 and y = 0 ∴ x31 + y35 = – 1 + 0 = –1 |
Q14. If x2 + y2 + 2x + 1 = 0, then the value of x2020 + y2020 is
(a) – 1
(b) 0
(c) 1
(d) 2
Answer: (c) 1 Solution: x2 + y2 + 2x + 1 = 0 ⇒ x2 + 2x + 1 + y2 = 0 ⇒ (x + 1)2 + y2 = 0 ⇒ x + 1 = 0 and y = 0 ⇒ x – 1 and y = 0 ∴ x2020 + y2020 = 1 + 0 = 1 |
Q15. a1−a+b1−b+c1−c=1 then find the value of
11−a+11−b+11−c=1
(a) 1
(b) 2
(c) 3
(d) 4
Answer: (a) 1 Solution: a1−a+b1−b+c1−c=1 ⇒a1−a+1+b1−b+1+c1−c+1=4 ⇒a+1−a1−a+b+1−b1−b+c+1−c1−c=4 ⇒11−a+11−b+11−c=1 |
Q16. If a2 = b + c, b2 = c + a, c2 = a + b, then the value of
11+a+11+b+11+c
(a) abc
(b) a2b2c2
(c) 1
(d) 0
Answer: (c) 1 Solution: 11+a=aa+a2=aa+b+c Similarly, 11+b=ba+b+c Similarly, 11+c=ca+b+c ∴11+a+11+b+11+c=a+b+ca+b+c=1 |
Q17. If a + b + c = 0, then find the value of
a2a2−bc+b2b2+ca+c2c2−ab
(a) 0
(b) 1
(c) 6
(d) None of these
Answer: (d) None of these Solution: Given, a + b + c = 0 ⇒ a = –(b+c) ⇒ a2 = (b+c)2 Now, a2a2−bc+b2b2−+ca+c2c2−ab =(b+c)2(b+c)2−bc+b2b2+c(b+c)+c2c2+b(b+c) =b2+2bc+c2b2+bc+c2+b2b2+c2+bc+c2b2+c2+bc =2(b2+bc+c2)b2+bc+c2=2 |
Q18. If a + b + c = 3, a2 + b2 + c2 = 6 and1a+1b+1c=1, where a, b, c are all non-zero, then ‘abc’ is equal to
(a) 12
(b) 14
(c) 23
(d) 32
Answer: (d)32 Solution: a + b + c = 3 ⇒ a2 + b2 + c2 +2ab +2bc +2ca = 9 (squaring both side) ⇒ ab + bc + ca = 32 Now, 1a+1b+1c=1 ⇒ ab+bc+caabc=1 ⇒ abc = ab + bc + ca = 32 |
Q19. If x2 + y2 + z2 + 2 = 2(y – x), then value of x3 + y3 + z3 is equal to
(a) 0
(b) 1
(c) 2
(d) 3
Answer: (a) 0 Solution: x2 + y2 + z2 + 2 = 2(y – x) ⇒ x2 + 2x + y2 – 2y + z2 + 2 = 0 ⇒ (x2 + 2x + 1) + (y2 – 2y + 1) + z2 = 0 ⇒ (x + 1)2 + (y – 1)2 + z2 = 0 ⇒ x + 1 = 0 ⇒ x = – 1; y – 1 = 0 ⇒ y = 1; z = 0 ∴ x3 + y3 + z3 = – 1 + 1 + 0 = 0 |
Q20. Q. If x4+1x4=119 and x > 1 then the value of x3−1x3
(a) 54
(b) 18
(c) 72
(d) 36
Answer: (d) 36 Solution: x4+1x4=119 ⇒x4+1x4+2.x2.1x2=121 ⇒ (x2+1x2)2=112 ⇒ (x2+1x2)=11 ( x > 1) ⇒ x2+1x2−2.x.1x=9 ⇒(x−1x)2=32 ⇒x−1x=3 ( X > 1) Using Trick ⇒x3−1x3=33+3×3=36 Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x−1x=n then x3−1x3 = n3 + 3.n |