Algebra Expressions MCQ Questions with details Solution
Q11. If p = 999, then the value of $\sqrt[3]{\mathrm{p}\left( \mathrm{p}^2+3\mathrm{p}+3 \right) +1}$is
(a) 998
(b) 999
(c) 1000
(d) 1002
Answer: (c) 1000 Solution: $\sqrt[3]{\mathrm{p}\left( \mathrm{p}^2+3\mathrm{p}+3 \right) +1}\,\,$ $=\,\,\sqrt[3]{\mathrm{p}^3+3\mathrm{p}^2.1+3\mathrm{p}.1^2+1}$ $=\,\,\sqrt[3]{\left( \mathrm{p}+1 \right) ^3}$ = p + 1 = 999 + 1 = 1000 |
Q12. If x + $\frac{1}{\mathrm{y}}$= 1 and y + $\frac{1}{\mathrm{z}}$ = 1, what is the value of xyz?
(a) 1
(b) – 1
(c) 0
(d) ½
Answer: (b) – 1 Solution: y + $\frac{1}{\mathrm{z}}$ = 1 ⇒ y = 1 – $\frac{1}{\mathrm{z}}$= $\frac{\mathrm{z}-1}{\mathrm{z}}$ Now x + $\frac{1}{\mathrm{y}}$= 1 ⇒ xy + 1 = y ⇒ xy + 1 = $\frac{\mathrm{z}-1}{\mathrm{z}}$ ⇒ xyz + z = z –1 ⇒ xyz = –1 |
Q13. If x2 + y2 + 2x + 1 = 0, then the value of x31 + y35 is
(a) – 1
(b) 0
(c) 1
(d) 2
Answer: (a) – 1 Solution: x2 + y2 + 2x + 1 = 0 ⇒ x2 + 2x + 1 + y2 = 0 ⇒ (x + 1)2 + y2 = 0 ⇒ x + 1 = 0 and y = 0 ⇒ x – 1 and y = 0 ∴ x31 + y35 = – 1 + 0 = –1 |
Q14. If x2 + y2 + 2x + 1 = 0, then the value of x2020 + y2020 is
(a) – 1
(b) 0
(c) 1
(d) 2
Answer: (c) 1 Solution: x2 + y2 + 2x + 1 = 0 ⇒ x2 + 2x + 1 + y2 = 0 ⇒ (x + 1)2 + y2 = 0 ⇒ x + 1 = 0 and y = 0 ⇒ x – 1 and y = 0 ∴ x2020 + y2020 = 1 + 0 = 1 |
Q15. $\frac{\mathrm{a}}{1-\mathrm{a}}+\frac{\mathrm{b}}{1-\mathrm{b}}+\frac{\mathrm{c}}{1-\mathrm{c}}=1$ then find the value of
$\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=1$
(a) 1
(b) 2
(c) 3
(d) 4
Answer: (a) 1 Solution: $\frac{\mathrm{a}}{1-\mathrm{a}}+\frac{\mathrm{b}}{1-\mathrm{b}}+\frac{\mathrm{c}}{1-\mathrm{c}}=1$ ⇒$\frac{\mathrm{a}}{1-\mathrm{a}}+1+\frac{\mathrm{b}}{1-\mathrm{b}}+1+\frac{\mathrm{c}}{1-\mathrm{c}}+1=4$ ⇒$\frac{\mathrm{a}+1-\mathrm{a}}{1-\mathrm{a}}+\frac{\mathrm{b}+1-\mathrm{b}}{1-\mathrm{b}}+\frac{\mathrm{c}+1-\mathrm{c}}{1-\mathrm{c}}=4$ ⇒$\frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=1$ |
Q16. If a2 = b + c, b2 = c + a, c2 = a + b, then the value of
$\frac{1}{1+\mathrm{a}}+\frac{1}{1+\mathrm{b}}+\frac{1}{1+\mathrm{c}}$
(a) abc
(b) a2b2c2
(c) 1
(d) 0
Answer: (c) 1 Solution: $\frac{1}{1+\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{a}^2}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$ Similarly, $\frac{1}{1+\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$ Similarly, $\frac{1}{1+\mathrm{c}}=\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$ ∴$\frac{1}{1+\mathrm{a}}+\frac{1}{1+\mathrm{b}}+\frac{1}{1+\mathrm{c}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}=1$ |
Q17. If a + b + c = 0, then find the value of
$\frac{\mathrm{a}^2}{\mathrm{a}^2-\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{b}^2+\mathrm{ca}}+\frac{\mathrm{c}^2}{\mathrm{c}^2-\mathrm{ab}}$
(a) 0
(b) 1
(c) 6
(d) None of these
Answer: (d) None of these Solution: Given, a + b + c = 0 ⇒ a = –(b+c) ⇒ a2 = (b+c)2 Now, $\frac{\mathrm{a}^2}{\mathrm{a}^2-\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{b}^2-+\mathrm{ca}}+\frac{\mathrm{c}^2}{\mathrm{c}^2-\mathrm{ab}}$ $=\,\,\frac{\left( \mathrm{b}+\mathrm{c} \right) ^2}{\left( \mathrm{b}+\mathrm{c} \right) ^2-\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{b}^2+\mathrm{c}\left( \mathrm{b}+\mathrm{c} \right)}+\frac{\mathrm{c}^2}{\mathrm{c}^2+\mathrm{b}\left( \mathrm{b}+\mathrm{c} \right)}$ $=\frac{\mathrm{b}^2+2\mathrm{bc}+\mathrm{c}^2}{\mathrm{b}^2+\mathrm{bc}+\mathrm{c}^2}+\frac{\mathrm{b}^2}{\mathrm{b}^2+\mathrm{c}^2+\mathrm{bc}}+\frac{\mathrm{c}^2}{\mathrm{b}^2+\mathrm{c}^2+\mathrm{bc}}$ $=\frac{2\left( \mathrm{b}^2+\mathrm{bc}+\mathrm{c}^2 \right)}{\mathrm{b}^2+\mathrm{bc}+\mathrm{c}^2}=2$ |
Q18. If a + b + c = 3, a2 + b2 + c2 = 6 and$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{b}}+\frac{1}{\mathrm{c}}=1$, where a, b, c are all non-zero, then ‘abc’ is equal to
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$
Answer: (d)$\frac{3}{2}$ Solution: a + b + c = 3 ⇒ a2 + b2 + c2 +2ab +2bc +2ca = 9 (squaring both side) ⇒ ab + bc + ca = $\frac{3}{2}$ Now, $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{b}}+\frac{1}{\mathrm{c}}=1$ ⇒ $\frac{\mathrm{ab}+\mathrm{bc}+\mathrm{ca}}{\mathrm{abc}}=1$ ⇒ abc = ab + bc + ca = $\frac{3}{2}$ |
Q19. If x2 + y2 + z2 + 2 = 2(y – x), then value of x3 + y3 + z3 is equal to
(a) 0
(b) 1
(c) 2
(d) 3
Answer: (a) 0 Solution: x2 + y2 + z2 + 2 = 2(y – x) ⇒ x2 + 2x + y2 – 2y + z2 + 2 = 0 ⇒ (x2 + 2x + 1) + (y2 – 2y + 1) + z2 = 0 ⇒ (x + 1)2 + (y – 1)2 + z2 = 0 ⇒ x + 1 = 0 ⇒ x = – 1; y – 1 = 0 ⇒ y = 1; z = 0 ∴ x3 + y3 + z3 = – 1 + 1 + 0 = 0 |
Q20. Q. If $\mathrm{x}^4+\frac{1}{\mathrm{x}^4}=119$ and x > 1 then the value of $\mathrm{x}^3-\frac{1}{\mathrm{x}^3}$
(a) 54
(b) 18
(c) 72
(d) 36
Answer: (d) 36 Solution: $\mathrm{x}^4+\frac{1}{\mathrm{x}^4}=119$ ⇒$\mathrm{x}^4+\frac{1}{\mathrm{x}^4}+2.\mathrm{x}^2.\frac{1}{\mathrm{x}^2}=121$ ⇒ $\left( \mathrm{x}^2+\frac{1}{\mathrm{x}^2} \right) ^2=11^2$ ⇒ $\left( \mathrm{x}^2+\frac{1}{\mathrm{x}^2} \right) =11$ ( x > 1) ⇒ $\mathrm{x}^2+\frac{1}{\mathrm{x}^2}-2.\mathrm{x}.\frac{1}{\mathrm{x}}=9$ ⇒$\left( \mathrm{x}-\frac{1}{\mathrm{x}} \right) ^2=3^2$ ⇒$\mathrm{x}-\frac{1}{\mathrm{x}}=3$ ( X > 1) Using Trick ⇒$\mathrm{x}^3-\frac{1}{\mathrm{x}^3}\,\,=\,\,3^3+3\times 3=36$ Short Trick: If $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{n}$ then $\mathrm{x}^3+\frac{1}{\mathrm{x}^3}$ = n3 – 3.n and If $\mathrm{x}-\frac{1}{\mathrm{x}}=\mathrm{n}$ then $\mathrm{x}^3-\frac{1}{\mathrm{x}^3}$ = n3 + 3.n |