Algebra Expressions MCQ Questions with details Solution
Q1. If 3x – 14y = 6, then the value of 4x – 13yis
(a) 2
(b) 4
(c) 6
(d) 8
Answer: (d) 8 Solution: 3x – 14y = 6 ⇒ 4x – 13y = 8 (multiplying 4/3 both side) |
Q2. If x−1x = 5 then the value of x2+1x2
(a) 7
(b) 9
(c) 27
(d) 81
Answer: (c) 27 Solution: x−1x = 5 ⇒ x2+1x2−2.x.1x=25 (squaring both side) ⇒ x2+1x2=27 Using Trick ⇒x2+1x2=52+2=27 Short Trick: If x+1x=n then x2+1x2 = n2 – 2 and If x−1x=n then x2+1x2 = n2 + 2 |
Q3. If x+1x=7then the value of x2+1x2
(a) 21
(b) 47
(c) 49
(d) 51
Answer: (b) 47 Solution: x+1x = 7 ⇒ x2+1x2+2.x.1x=49 (squaring both side) ⇒ x2+1x2=47 Using Trick ⇒x2+1x2=72−2=47 Short Trick: If x+1x=n then x2+1x2 = n2 – 2 and If x−1x=n then x2+1x2 = n2 + 2 |
Q4. If x+1x=2then the value of x2020+1x2020
(a) 0
(b) 2
(c) 4
(d) 2020
Answer: (b) 2 Solution: x+1x=2 ⇒ x2 +1 = 2x ⇒ x2 – 2x + 1 = 0 ⇒ (x – 1)2 = 0 ⇒ x = 1 ∴ x2020+1x2020=12+112=2 Short Tricks: If x+1x=2 then the value ofxn+1xn=2, where n = integer |
Q5. If x+1x=5then the value of x4+1x4
(a) 527
(b) 530
(c) 550
(d) 625
Answer: (a) 527 Solution: x+1x = 5 ⇒ x2+1x2+2.x.1x=25 (squaring both side) ⇒ x2+1x2=23 ⇒ x4+1x4+2.x2.1x2=529 (squaring both side) ⇒ x4+1x4=527 Using Trick ⇒x4+1x4=(52−2)2−2=527 Short Trick: If x+1x=n then x4+1x4 = (n2 – 2)2 – 2 and If x−1x=n then x4+1x4 = (n2 + 2)2 – 2 |
Q6. If x−1x=3 then the value of x4+1x4
(a) 81
(b) 100
(c) 125
(d) 119
Answer: (d) 119 Solution: x+1x = 9 ⇒ x2+1x2−2.x.1x=9 (squaring both side) ⇒ x2+1x2=11 ⇒ x4+1x4+2.x2.1x2=121 (squaring both side) ⇒ x4+1x4=119 Using Trick ⇒x4+1x4=(32+2)2−2=119 Short Trick: If x+1x=n then x4+1x4 = (n2 – 2)2 – 2 and If x−1x=n then x4+1x4 = (n2 + 2)2 – 2 |
Q7. If x+1x=3then the value of x3+1x3
(a) 18
(b) 47
(c) 49
(d) 51
Answer: (a) 18 Solution: x+1x = 3 ⇒ x3+1x3+3.x.1x(x+1x)=27 (cubing both side) ⇒ x3+1x3=27−9=18 Using Trick ⇒x3+1x3=33−3×3=18 Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x−1x=n then x3−1x3 = n3 + 3.n |
Q8. If x−1x=5then the value of x3−1x3
(a) 125
(b) 130
(c) 135
(d) 140
Answer: (d) 140 Solution: x+1x = 5 ⇒ x3−1x3−3.x.1x(x−1x)=125 (cubing both side) ⇒ x3−1x3=125+15=140 Using Trick ⇒x3−1x3=53+3×5=140 Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x−1x=n then x3−1x3 = n3 + 3.n |
Q9. If x+1x=3then the value of x6+1x6
(a) 320
(b) 322
(c) 341
(d) 350
Answer: (b) 322 Solution: x+1x = 3 ⇒ x3+1x3+3.x.1x(x+1x)=27 (cubing both side) ⇒ x3+1x3=27−9=18 ⇒ x6+1x6+2.x3.1x3=324(squaring both side) ⇒ x6+1x6=324−2=322
Using Trick ⇒x6+1x6=(33−3×3)2−2=322 Short Trick: If x+1x=n then x6+1x6 = (n3 – 3.n)2 – 2 and If x−1x=n then x6+1x6 = (n3 + 3.n)2 + 2 |
Q10. If x−1x=2 then the value of x6+1x6
(a) 125
(b) 196
(c) 198
(d) 225
Answer: (c) 198 Solution: x−1x = 2 ⇒ x3−1x3−3.x.1x(x−1x)=8 (cubing both side) ⇒ x3−1x3=8+6=14 ⇒ x6+1x6−2.x3.1x3=196 (squaring both side) ⇒ x6+1x6=196+2=198
Using Trick ⇒x6+1x6=(23+3×2)2+2=198 Short Trick: If x+1x=n then x6+1x6 = (n3 – 3.n)2 – 2 and If x−1x=n then x6+1x6 = (n3 + 3.n)2 + 2 |