Algebra Expressions MCQ Questions

Facebook
Twitter
Telegram
WhatsApp
Pinterest
Reddit
Tumblr

Algebra Expressions MCQ Questions with details Solution

 

Q1. If 3x – 14y = 6, then the value of 4x – 13yis

(a) 2

(b) 4

(c) 6

(d) 8

Answer: (d) 8

Solution: 3x – 14y = 6

⇒ 4x – 13y = 8 (multiplying 4/3 both side)

Q2. If   x1x = 5 then the value of  x2+1x2

(a) 7

(b) 9

(c) 27

(d) 81

Answer: (c) 27

Solution: x1x = 5

x2+1x22.x.1x=25 (squaring both side)

x2+1x2=27

Using Trick ⇒x2+1x2=52+2=27

Short Trick: If x+1x=n then x2+1x2 = n2 – 2 and If x1x=n then x2+1x2 = n2 + 2

Q3.  If   x+1x=7then the value of x2+1x2

(a) 21

(b) 47

(c) 49

(d) 51

Answer: (b) 47

Solution: x+1x = 7

x2+1x2+2.x.1x=49 (squaring both side)

x2+1x2=47

Using Trick ⇒x2+1x2=722=47

Short Trick: If x+1x=n then x2+1x2 = n2 – 2 and If x1x=n then x2+1x2 = n2 + 2

Q4.  If   x+1x=2then the value of x2020+1x2020

(a) 0

(b) 2

(c) 4

(d) 2020

Answer: (b) 2

Solution: x+1x=2

⇒ x2 +1 = 2x

⇒ x2 – 2x + 1 = 0

⇒ (x – 1)2 = 0

⇒ x = 1

x2020+1x2020=12+112=2

Short Tricks: If   x+1x=2 then the value ofxn+1xn=2, where n = integer

Q5.  If   x+1x=5then the value of x4+1x4

(a) 527

(b) 530

(c) 550

(d) 625

Answer: (a) 527

Solution: x+1x = 5

x2+1x2+2.x.1x=25 (squaring both side)

x2+1x2=23

x4+1x4+2.x2.1x2=529 (squaring both side)

x4+1x4=527

Using Trick ⇒x4+1x4=(522)22=527

Short Trick: If x+1x=n then x4+1x4 = (n2 – 2)2 – 2 and

If x1x=n then x4+1x4 = (n2 + 2)2 – 2

Q6.  If   x1x=3 then the value of x4+1x4

(a) 81

(b) 100

(c) 125

(d) 119

Answer: (d) 119

Solution: x+1x = 9

x2+1x22.x.1x=9 (squaring both side)

x2+1x2=11

x4+1x4+2.x2.1x2=121 (squaring both side)

x4+1x4=119

Using Trick ⇒x4+1x4=(32+2)22=119

Short Trick: If x+1x=n then x4+1x4 = (n2 – 2)2 – 2 and

If x1x=n then x4+1x4 = (n2 + 2)2 – 2

 

Q7.  If   x+1x=3then the value of x3+1x3

(a) 18

(b) 47

(c) 49

(d) 51

Answer: (a) 18

Solution: x+1x = 3

x3+1x3+3.x.1x(x+1x)=27 (cubing both side)

x3+1x3=279=18

Using Trick ⇒x3+1x3=333×3=18

Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x1x=n then x31x3 = n3 + 3.n

Q8.  If   x1x=5then the value of x31x3

(a) 125

(b) 130

(c) 135

(d) 140

Answer: (d) 140

Solution: x+1x = 5

x31x33.x.1x(x1x)=125 (cubing both side)

x31x3=125+15=140

Using Trick ⇒x31x3=53+3×5=140

Short Trick: If x+1x=n then x3+1x3 = n3 – 3.n and If x1x=n then x31x3 = n3 + 3.n

Q9.  If   x+1x=3then the value of x6+1x6

(a) 320

(b) 322

(c) 341

(d) 350

Answer: (b) 322

Solution: x+1x = 3

x3+1x3+3.x.1x(x+1x)=27 (cubing both side)

x3+1x3=279=18

x6+1x6+2.x3.1x3=324(squaring both side)

x6+1x6=3242=322

 

Using Trick ⇒x6+1x6=(333×3)22=322

Short Trick: If x+1x=n then x6+1x6 = (n3 – 3.n)2 – 2 and

If x1x=n then x6+1x6 = (n3 + 3.n)2 + 2

Q10.  If   x1x=2 then the value of x6+1x6

(a) 125

(b) 196

(c) 198

(d) 225

Answer: (c) 198

Solution: x1x = 2

x31x33.x.1x(x1x)=8 (cubing both side)

x31x3=8+6=14

x6+1x62.x3.1x3=196 (squaring both side)

x6+1x6=196+2=198

 

Using Trick ⇒x6+1x6=(23+3×2)2+2=198

Short Trick: If x+1x=n then x6+1x6 = (n3 – 3.n)2 – 2 and

If x1x=n then x6+1x6 = (n3 + 3.n)2 + 2

 

Pages ( 1 of 2 ): 1 2Next »

Read Important Article

Leave a Comment

error: Content is protected !!