Simplification MCQ Question with Details Answer
Q1. 2.002 + 7.9 {(2.8 – 6.3 (3.6 – 1.5) + 15.6)}
(a) 2.002
(b) 4.2845
(c) 4.0843
(d) 42.845
Answer: (d) 42.845 Solution: 2.002 + 7.9 {(2.8 – 6.3 (3.6 – 1.5) + 15.6)} = 2.002 + 7.9 (2.8 – 6.3 × 2.1 + 15.6) = 2.002 + 7.9 (2.8 – 13.23 + 15.6) = 2.002 + 7.9 × 15.17 = 2.002 + 40.843 = 42.845 |
Q2. The value of $3\div \left[ \left( 8-5 \right) \div \left\{ \left( 4-2 \right) +\left( 2+\frac{8}{13} \right) \right\} \right] $
(a) $\frac{15}{17}$
(b) $\frac{13}{17}$
(c) $\frac{15}{19}$
(d) $\frac{13}{19}$
Answer: (b) Solution: $3\div \left[ \left( 8-5 \right) \div \left\{ \left( 4-2 \right) \div \left( 2+\frac{8}{13} \right) \right\} \right] $ $=3\div \left[ 3\div \left\{ 2\div \frac{34}{13} \right\} \right] $ $=3\div \left[ 3\div \frac{13}{17} \right] =3\div \frac{3\times 17}{13}$ $=3\times \frac{13}{3\times 17}=\frac{13}{17}$ |
Q3. $9-1\frac{2}{9}\mathrm{of} 3\frac{3}{11}\div 5\frac{1}{7}\,\,\mathrm{of} \frac{7}{9}\,\,=?$
(a) $\frac{5}{4}$
(b) 8
(c) $8\frac{32}{81}$
(d) 9
Answer: (b) 8 Solution: $9-1\frac{2}{9}\mathrm{of} 3\frac{3}{11}\div 5\frac{1}{7}\,\,\mathrm{of} \frac{7}{9}\,\,$ $=\,\,9-\frac{11}{9}\,\,\mathrm{of} \frac{36}{11}\,\,\times \frac{1}{\frac{36}{7}\times \frac{7}{9}}$ $=9-4 \times \frac{1}{4}\,\,=8$ |
Q4. 777.07 + 77.77 + 0.77 + 7.07 + 7 + 77 = ?
(a) 946.78
(b) 946.68
(c) 964.68
(d) 946.86
Answer: (c) 964.68 Solution: |
Q5. Find the value of $999\frac{1}{7}+999\frac{2}{7}+999\frac{3}{7}+999\frac{4}{7}+999\frac{5}{7}+999\frac{6}{7}$
(a) 5997
(b) 5979
(c) 5994
(d) 6997
Answer: (a) Solution: $999\frac{1}{7}+999\frac{2}{7}+999\frac{3}{7}+999\frac{4}{7}+999\frac{5}{7}+999\frac{6}{7}$ $=\,\,999+\frac{1}{7}\,\,+999+\frac{2}{7}+999+\frac{3}{7}+999+\frac{4}{7}+999+\frac{5}{7}+999+\frac{6}{7}$ $6\times 999 +\,\,\frac{1+2+3+4+5+6}{7}\,\, =\,\,5994 +\,\,3 =5997$ |
Q6. Find the value of $\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}$
(a) $\frac{10}{11}$
(b) $\frac{9}{11}$
(c) $\frac{5}{11}$
(d) $\frac{7}{11}$
Answer: (c) Solution: $\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}$ $=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}$ $=\frac{1}{2}\left( 1-\frac{1}{11} \right) \,\,=\frac{5}{11}$
Triks: $\frac{1}{\mathrm{n}\left( \mathrm{n}+2 \right)}+\frac{1}{\left( \mathrm{n}+2 \right) \left( \mathrm{n}+4 \right)}+…. +\frac{1}{\left\{ \mathrm{n}\left( \mathrm{m}-2 \right) \right\} \left( \mathrm{n}+\mathrm{m} \right)}$ $=\,\,\frac{1}{2}\left( \frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+\mathrm{m}} \right) $ |
Q7. Find the value of $0.\bar{3}+0.\bar{6}+0.\bar{7}+0.\bar{8}$
(a) $2\frac{3}{10}$
(b) $2\frac{2}{3}$
(c) $20.\overline{35}$
(d) $5\frac{3}{10}$
Answer: (b) Solution: $0.\bar{3}+0.\bar{6}+0.\bar{7}+0.\bar{8}$ $=\frac{3}{9}+\frac{6}{9}+\frac{7}{9}+\frac{8}{9}=\frac{3+6+7+8}{9}=\frac{24}{9}=2\frac{2}{3}$ |
Q8. 1/4th of number of boys and 3/8th of number of girls participated in annual sports of the school. What fractional part of total number of students participated?
(a) 32%
(b) 20%
(c) 36%
(d) Data inadequate
(e) None of the above
Answer: (d) Solution: total number of students participated = $\frac{\mathrm{B}}{4}+\frac{3\mathrm{G}}{8}$ Required percentage = $\frac{\frac{\mathrm{B}}{4}+\frac{3\mathrm{G}}{8}}{\left( \mathrm{B}+\mathrm{G} \right)}\times 100 Since, B and G are unknown ; Clearly given Data is inadequate. |
Q9. Simplify : $1+\frac{1}{1+\frac{2}{2+\frac{3}{1+\frac{4}{5}}}}$
(a) $1\frac{11}{17}$
(b) $1\frac{5}{7}$
(c) $1\frac{6}{17}$
(d) $1\frac{21}{17}$
Answer: (a) $1\frac{11}{17}$ Solution: 1st ⇒ $1+\frac{4}{5}=\frac{9}{5}$ 2nd ⇒ $2+\frac{3\times 5}{9}=\frac{11}{3}$ 3rd ⇒ $1+\frac{2\times 3}{11}=\frac{17}{11}$ 4th ⇒$1+\frac{11}{17}=1\frac{11}{17}$ |
Q10. . If x = $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}$ then, the value of $2\mathrm{x}+\frac{7}{4}$ is
(a) 3
(b) 4
(c) 5
(d) 6
Answer: (c) 5 Solution: 1st ⇒ $1+\frac{1}{2}=\frac{3}{2}$ 2nd ⇒ $1+\frac{2}{3}=\frac{5}{3}$ 3rd ⇒ $1+\frac{3}{5}=\frac{8}{5}$ 4th ⇒ $1+\frac{5}{8}=\frac{13}{8}$ ∴ $2\mathrm{x}+\frac{7}{4}=2\times \frac{13}{8}+\frac{7}{4}=5$ |