Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer
Q21. The value of x for which 42x -22x = 12 holds, is:
(a) 2
(b) 3
(c) 1
(d) -1
(e) None of these
Answer: (c) Solution: 4^{2x}-2^{2x}=12 \Rightarrow 2^{4x}-2^{2x}=12, Let\,\,2^{2x\,\,}=a \therefore a^2-a-12=0 \Rightarrow \left( a-4 \right) \left( a+3 \right) =0 \therefore a=\,\,4 or\,\,a=-3; if\,\,a=-3 then\,\,it\,\,complex\,\,number \therefore a=4 \Rightarrow 2^{2x}=2^2 \Rightarrow x=1 |
Q22. If 9x – 10.3x + 9 = 0 then x is equal to:
(a) 2 or 0
(b) 1 or 3
(c) 1 or 9
(d) 1 or -2
(e) None of these
Answer: (a) Solution: 9^x-10.3^x+9=0 \Rightarrow 3^{2x}-10.3^x+9=0, Let\,\,3^x=a \Rightarrow a^2-10a+9=0 \Rightarrow \left( a-9 \right) \left( a-1 \right) =0 \therefore a=9 or\,\,a=1 \Rightarrow 3^x=3^2\,\,or\,\,3^x=3^0 \Rightarrow x=2 or\,\,0 |
Q23. The value of \sqrt[3]{x^{12}}+\sqrt{x^6}is:
(a) x7
(b) x6
(c) x8
(d) x10
(e) None of these
Answer: (e) Solution: \sqrt[3]{x^{12}}+\sqrt{x^6}=x^{\frac{12}{3}}+x^{\frac{6}{2}}=\,\,x^4+x^3 |