Processing math: 0%

Power, Indices and Surds MCQ Question with Answer

Facebook
Twitter
Telegram
WhatsApp
Pinterest
Reddit
Tumblr

Power, Indices and Surds: Quantitative Aptitude MCQ Question with Answer

 

Q21. The value of x for which 42x -22x = 12 holds, is:

(a) 2

(b) 3

(c) 1

(d) -1

(e) None of these

Answer: (c)

Solution: 4^{2x}-2^{2x}=12

\Rightarrow 2^{4x}-2^{2x}=12, Let\,\,2^{2x\,\,}=a

\therefore a^2-a-12=0

\Rightarrow \left( a-4 \right) \left( a+3 \right) =0

\therefore a=\,\,4 or\,\,a=-3; if\,\,a=-3 then\,\,it\,\,complex\,\,number

\therefore a=4

\Rightarrow 2^{2x}=2^2

\Rightarrow x=1

Q22. If 9x – 10.3x + 9 = 0 then x is equal to:

(a) 2 or 0

(b) 1 or 3

(c) 1 or 9

(d) 1 or -2

(e) None of these

Answer: (a)

Solution: 9^x-10.3^x+9=0

\Rightarrow 3^{2x}-10.3^x+9=0, Let\,\,3^x=a

\Rightarrow a^2-10a+9=0

\Rightarrow \left( a-9 \right) \left( a-1 \right) =0

\therefore a=9 or\,\,a=1

\Rightarrow 3^x=3^2\,\,or\,\,3^x=3^0

\Rightarrow x=2 or\,\,0

Q23. The value of \sqrt[3]{x^{12}}+\sqrt{x^6}is:

(a) x7

(b) x6

(c) x8

(d) x10

(e) None of these

Answer: (e)

Solution: \sqrt[3]{x^{12}}+\sqrt{x^6}=x^{\frac{12}{3}}+x^{\frac{6}{2}}=\,\,x^4+x^3

 

 

Pages ( 3 of 3 ): « Previous12 3

Read Important Article

Leave a Comment

error: Content is protected !!